Aroma-Active Compounds in Kimchi during Fermentation

Y. J. Cha, ${ }^{\dagger}$ H. Kim, ${ }^{\dagger}$ and K. R. Cadwallader*
Department of Food Science and Technology, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Box 9805, Mississippi State, Mississippi 39762

During fermentation, volatile flavor compounds in Kimchi prepared with (FS) and without (C) fish sauce were analyzed by vacuum simultaneous steam distillation-solvent extraction/gas chromatography/mass spectrometry (V-SDE/GC/MS) and GC/olfactometry. On the basis of their high odor intensities ($\mathrm{Ol} \geq 3$), eight sulfur-containing compounds having garlic-, garlic salt-, onion-, green onion-, and cooked cabbage-like odors and six unknowns with garlic-, onion-, and green onion-like odors were predominant in both FS and C during fermentation. The most intense odorants ($\mathrm{OI} \geq$ 4.0) in Kimchi included dimethyl trisulfide, diallyl disulfide isomers, diallyl trisulfide, methylallyl disulfide, and an unknown (garlic salt- and/or mustard-like). In addition to these, other odorants ($\mathrm{OI} \geq 3.5$) such as 3 -(methylthio)propanal (baked/boiled potato-like), (E, Z)-2,6-nonadienal (cucumberlike), phenylacetaldehyde (honeysuckle-like), linalool (floral- and/or flower-like), (E,E)-2,4-decadienal (fatty and/or sweet), 2,3-butanedione (buttery), unknown (meaty), unknown (apple sauce-like), and unknown (vitamin and/or cooked rice-like) may play important roles in formation of Kimchi flavor. Addition of fish sauce did not noticeably affect the aroma profile of Kimchi.

Keywords: Kimchi; aroma-active compound; volatile flavor

INTRODUCTION

Kimchi is a traditional Korean fermented vegetable product served at every meal along with cooked rice and other dishes (Mheen and K won, 1984). Chinese cabbage is the main ingredient of Kimchi. Other minor components include red pepper, garlic, ginger, and fish sauce. Many kinds of Kimchi are available depending on the raw materials and processing methods. The types and combinations of minor ingredients have been reported to be key for delicious K imchi (Park, 1995; Lee and Lee, 1994; Lee et al., 1989).

Previous research has demonstrated that salt concentration and fermentation time and temperature are important factors affecting Kimchi quality (Park, 1995; Mheen and Kwon, 1984; Choi et al., 1990; K oo and Choi, 1990). It is generally accepted that an intial salt concentration of about 3\% is optimum for high-quality Kimchi. Park (1995) reported that a fermentation period of $2-3$ weeks at $2-7^{\circ} \mathrm{C}$ was best with respect to the nutritional and taste quality of Kimchi. Choi et al. (1990) also reported that Kimchi made under these conditions (3% salt content and $4^{\circ} \mathrm{C}$) could be stored for more than 80 days without significant deterioration in quality. However, Park et al. (1994) concluded from a survey of Kimchi producers that fish sauce was the most important factor affecting Kimchi flavor quality.

Recently, the focus of studies on Kimchi has merged into optimization and standardization of processing methods for the purpose of producing Kimchi on an industrial scale. To achieve this goal, a better under-

[^0]standing of Kimchi flavor is needed. Limited research has been conducted on the volatile constituents of Kimchi (Heo et al., 1988; Ryu et al., 1984). Fish sauce, as a rich nutrient source, is known to play an important role in flavor formation in Kimchi (Park, 1995; Park et al., 1994). However, the role of this ingredient as well as others in formation of aroma-active compounds of Kimchi during fermentation has not been investigated. The objective of this study was to identify and compare aroma-active compounds in Kimchi made with and without fish sauce during 30 day fermentations at $5^{\circ} \mathrm{C}$.

MATERIALS AND METHODS

Materials. All materials (Table 1) for making Kimchi were obtained from Ducksung Food Co. (DFC, Changwon, South K orea). Brined Chinese cabbage was prepared using a commercial process at DFC as follows. Washed Chinese cabbage $\left(\approx 60 \mathrm{~kg}\right.$) was submerged in $8 \%(\mathrm{w} / \mathrm{v})$ salt for 12 h at $15{ }^{\circ} \mathrm{C}$, followed by dewatering by pressing with a heavy stone (≈ 30 kg) for 1 h in a stainless steel sieve.

The yield of brined cabbage after dewatering was 73% (e.g. 44 kg). The salinity of the brined cabbage was 3.5% as determined by the Mohr method (AOAC, 1980). Pretreatment of the sample was as follows. Cabbage (100 g) was homogenized in a Waring blender. Five grams of the homogenized cabbage was suspended in 90 mL of distilled water, and the suspension was allowed to stand at ambient temperature for 1 h . The suspension was filtered (no. 40 filter paper, Whatman). The filter pad was washed several times, and the combined filtrate was brought to a volume of 100 mL . Duplicate salt determinations were made.

The other minor ingredients, including fish sauce [or 23\% (w/v) brine for control], were blended to paste consistency before addition to Chinese cabbage. Care was taken to fully distribute the ingredients among the salted Chinese cabbage leaves by using a gloved hand. The final mixture was divided into 3 kg aliquots, which were placed in 5 L stainless steel containers (one for each treatment-time combination), covered with stainless steel lids, and stored for 30 days at $5{ }^{\circ} \mathrm{C}$.

Table 1. Composition ${ }^{\text {a }}$ of Kimchi

material	$\mathrm{C}^{\text {b }}$	$\mathrm{FS}^{\text {b }}$
Chinese cabbage (brined)	86.1	86.1
red pepper (powder)	3.30	3.30
anchovy sauce	-	3.50
shrimp paste	-	0.40
garlic	1.40	1.40
ginger	0.25	0.25
green onion	0.50	0.50
leek	0.80	0.80
carrot	0.50	0.50
sea tangle (Laminaria sp.)	3.00	3.00
salt	0.21	0.21
sugar	0.04	0.04
brine (23\% NaCl)	3.90	-
total	100.0	100.0

${ }^{\text {a }}$ Percent (w / v). ${ }^{\mathrm{b}}$ C $\mathrm{C}=$ control, $\mathrm{FS}=$ fish sauce (anchovy sauce and shrimp paste) substituted for brine in control.

Proximate compositions (AOAC, 1980) of anchovy and shrimp paste used in this study were as follows: moisture, 67.6 and 61.7%, respectively; lipid, 1.0 and 2.7%, respectively; protein, 8.1 and 11.3%, respectively; ash, 22.3 and 27.9%, respectively; salinity, 22.7 and 27.0%, respectively; and amino nitrogen, 0.78 and $0.80 \mathrm{~g} \%(\mathrm{w} / \mathrm{w})$, respectively.

All standard compounds were purchased from Aldrich Chemical Co. (Milwaukee, WI) except 2-acetyl-1-pyrroline, which was from R. Buttery (USDA, ARS, WRRC, Albany, CA), and (Z)-4-heptenal, which was purchased from Alfa (Ward Hill, MA).

Vacuum Simultaneous Steam Distillation-Solvent Extraction (V-SDE). The procedure of Chung and Cadwallader (1994) for V-SDE was followed with some modifications. A homogenized (Waring blender for 30 s) Kimchi sample (350 g) and distilled water (1.15 L) were extracted for 2.5 h with redistilled diethyl ether (200 mL) under reduced pressure (2628 in. Hg) in a modified SDE apparatus (catalog no. 5230100000, K ontes, Vineland, NJ). The sample temperature was maintained at $60-65{ }^{\circ} \mathrm{C}$ during extraction. V-SDE extracts were kept at $-20^{\circ} \mathrm{C}$ overnight to facilitate water removal as ice crystals. The volume of each V-SDE extract was reduced to 10 mL under a gentle stream of nitrogen and dried over 2 g of anhydrous sodium sulfate, and then the volume was further reduced to 1 mL prior to analysis. Duplicate extractions were carried out for FS and C at each sampling time.

Gas Chromatography/Olfactometry (GC/O). The GC/O system consisted of an HP 5890 Series II gas chromatograph (Hewlett-Packard Co., Palo Alto, CA) equipped with a flame ionization detector (FID) and a sniffing port. On-column injection was employed to minimize destruction of thermally labile compounds, such as terpenes and sulfur-containing compounds (Block and Cal vey, 1994). One microliter of each extract (9 -fold diluted in redistilled diethyl ether from the original concentrated extract) was injected into a capillary column (DB-WAX, $30 \mathrm{~m} \times 0.32 \mathrm{~mm}$ inside diameter $\times 0.25$ μ m film thickness; J \&W Scientific, Folsom, CA). Effluent from the end of the GC column was split 1:1 between the FID and sniffing port. Further details of the procedure have been reported elsewhere (Chung and Cadwallader, 1994). The oven temperature was programmed from 40 to $200^{\circ} \mathrm{C}$ at a rate of $6^{\circ} \mathrm{C} / \mathrm{min}$ with initial and final hold times of 5 and 30 min , respectively. FID and injector temperatures were 250 and 40 ${ }^{\circ} \mathrm{C}$, respectively. Sniffing port and transfer line temperatures were maintained at $200^{\circ} \mathrm{C}$. The carrier gas was helium at a constant flow of $1.4 \mathrm{~mL} / \mathrm{min}$. GC/O was performed on one of each duplicate V-SDE extract by three trained panelists. Panelists were instructed to assign the odor properties and rate odor intensity of each compound using an eight-point scale (where $0=$ no odor detected and $7=$ very strong odor detected). Odor descriptions for each compound were assigned using a free choice vocabulary.

Gas Chromatography/Mass Spectrometry (GC/MS). One microliter of each V-SDE extract was injected (on-column) into an HP 5890 Series II GC/HP 5972 mass selective detector
(MSD) (Hewlett-Packard Co.) equipped with a capillary column (DB-WAX, $60 \mathrm{~m} \times 0.25 \mathrm{~mm}$ inside diameter $\times 0.25 \mu \mathrm{~m}$ film thickness; J \& W Scientific Inc.). The oven temperature was programmed from 40 to $200^{\circ} \mathrm{C}$ at $3^{\circ} \mathrm{C} / \mathrm{min}$ with initial and final hold times of 5 and 60 min , respectively. The carrier gas was helium at a constant flow of $0.96 \mathrm{~mL} / \mathrm{min}$. MSD conditions were as follows: capillary direct MS interface temperature, $280^{\circ} \mathrm{C}$; ion source temperature, $280^{\circ} \mathrm{C}$; ionization energy, 70 eV ; mass range, 33-350 amu; scan rate, 2.2 scans/s; and electron multiplier voltage, 200 V above autotune. Duplicate analyses were performed on each V-SDE extract.

Compound Identification. Positive identifications were based on comparison of GC retention indices (RI) (van den Dool and Kratz, 1963), mass spectra, and aroma properties of unknowns with those of authentic standard compounds analyzed under identical experimental conditions. Tentative identifications were based on comparison with the Wiley 138k mass spectral database (J ohn Wiley and Sons, Inc., 1990).

Statistical Analysis. Quantitative data were analyzed with analysis of variance (SAS Institute, Inc., 1995) to determine whether significant differences existed between FS and C at $0,7,15$, and 30 d of fermetation and among fermentation periods within FS or C. Mean separation was done using the least significant difference (LSD) method. GC/O data were anal yzed using a randomized complete block design with panelists serving as blocks. Mean separation was with the LSD method.

RESULTS AND DISCUSSION

A total of 160 volatile compounds were detected by GC/MS analysis of V-SDE extracts of Kimchi prepared with (FS) and without (C) added fish sauce (Table 2). One hundred fifty compounds were detected in C and 159 in FS. These included 23 sulfur-containing compounds, 23 aldehydes, 10 ketones, 36 alcohols, 24 terpenes, 6 isothiocyanates, 9 acids, 11 esters, 5 nitrogencontaining compounds, 6 aromatic compounds, and 7 miscellaneous compounds. A total of 77 aroma-active compounds, including 16 sulfur-containing compounds, 6 aldehydes, 2 ketones, 6 alcohols, 1 terpene, 1 nitrogencontaining compound, 1 isothiocyanate, 1 acid, and 43 unknowns, were detected by GC/O in FS and C (Table 3).

Among 23 sulfur-containing compounds detected, diallyl disulfide isomers, methylallyl disulfide, dimethyl trisulfide, and dimethyl disulfide were in highest abundance. Dimethyl trisulfide, diallyl disulfide isomer (no. 95), and diallyl trisulfide had the highest odor intensities in both FS and C throughout the fermentation period despite their gradual decrease in concentration. These compounds contributed strong cooked cabbage-, hot spicy- and/or fresh garlic-, and green onion-like odors and are characteristic of the overall aroma of Kimchi. Quantitative and GC/O data were comparable for many sulfur compounds (e.g. no. 5, 95, and 117). In general, odor intensities of most sulfur compounds decreased during fermentation. In particular, intensities of compounds $4,13,27,65$, and 117, having onion-, rotten onion-, garlic-, garlic salt-, and green onion-like odors, were low in both FS and C after 30 d of fermentation. The level of dimethyl trisulfide and dimethyl tetrasulfide decreased during fermentation in FS and C; however, the perceived odor intensity of dimethyl trisulfide remained constant throughout the fermention period.

The majority of sulfur-containing compounds detected in the present study may have originated from the Allium species used as ingredients in Kimchi, such as garlic (Yu et al., 1993, 1994a), green onion (Kuo and Ho, 1992), and leek (Block et al., 1992). These com-
Table 2. Changes in the Volatile Composition of Kimchi during Fermentation

no. ${ }^{\text {a }}$	compound name by class	$\mathrm{RI}^{\text {b }}$	$\mathrm{C}^{\text {a }}$								FSa							
			day 0		day 7		day 15		day 30		day 0		day 7		day 15		day 30	
			MAR ${ }^{\text {c }}$	SD ${ }^{\text {d }}$	MAR	SD												
4	propanethiole	830	0.013	0.011	0.025	0.008	-	-		-	0.021	0.014	0.015	0.013	-	-	-	-
5	methylthiirane ${ }^{\text {e }}$	875	0.14	0.20	1.3	0.20	0.27	0.07	0.10	0.030	0.38	0.43	0.88	0.78	0.45	0.11	0.24	0.080
13	3-(methylthio)-1-propene ${ }^{\text {e }}$	948	0.11	0.030	0.045	0.078	0.013	0.002	0.004	0.003	0.13	0.010	0.022	0.022	0.007	0.003	0.002	0.002
24	S-methyl thioethanoate	1041	0.044	0.004	0.005	0.010	-	-	0.050	0.058	0.029	0.021	-	-	-	-	0.091	0.030
27	dimethyl disulfide	1065	2.8	0.50	0.26	0.020	2.5	0.40	0.39	0.060	2.6	1.2	0.62	0.18	0.80	0.21	0.36	0.17
32	allylpropyl sulfide ${ }^{\text {e }}$	1099	0.004	0.008	0.007	0.006	0.005	0.004	-	- 0.010	- 0.072	- 0.019	0.014	0.002	0.003	0.005	0.002	0.005
41	diallyl sulfide	1143	0.12	0.020	0.19	0.030	0.19	0.010	0.18	0.010	0.072	0.019	0.29	0.010	0.19	0.010	0.27	0.070
59	methylpropyl disulfide	1226	0.15	0.040	0.061	0.035	0.29	0.020	0.096	0.006	0.13	0.010	0.043	0.014	0.16	0.050	0.088	0.029
65	methyl-(Z)-propenyl disulfide ${ }^{\text {e }}$	1261	0.20	0.020	0.043	0.016	0.065	0.005	0.019	0.008	0.18	0.050	0.055	0.026	0.052	0.011	0.027	0.006
67	methyl allyl disulfide	1281	5.3	1.1	2.1	0.20	5.3	0.50	2.1	0.10	5.1	0.90	3.2	0.60	3.7	0.80	2.0	0.60
69	methyl-(E)-propenyl disulfide ${ }^{\text {e }}$	1287	1.3	0.20	0.26	0.050	0.41	0.020	0.14	0.030	1.2	<0.1	0.40	0.14	0.28	0.050	-	-
81	dipropyl disulfide ${ }^{\text {e }}$	1377	0.15	0.050	0.054	0.006	0.104	0.012	0.046	0.033	0.18	0.08	0.027	0.002	0.026	0.018	0.026	0.016
82	dimethyl trisulfide	1379	3.5	0.70	0.50	0.050	1.2	<0.1	0.25	0.030	3.7	0.60	1.4	0.50	0.80	0.33	0.34	0.13
87	allylpropyl disulfide ${ }^{\text {e }}$	1428	0.36	0.090	0.35	0.10	0.30	0.07	0.30	0.020	0.29	0.10	0.36	0.15	0.32	0.10	0.21	0.040
88	(E)-propenylpropyl disulfide ${ }^{\text {e }}$	1435	0.083	0.019	0.052	0.015	0.047	0.004	0.006	0.011	0.080	0.018	0.052	0.018	0.026	0.009	0.012	0.015
91	3-(methylthio)propanal	1449	0.006	0.001	0.007	0.005	0.005	0.006	0.002	0.002	0.013	0.002	0.021	0.004	0.002	0.002	0.001	<0.001
94	dithio(1-propenyl) propionate ${ }^{\text {e }}$	1462	0.19	0.050	0.16	0.050	0.12	0.02	0.057	0.017	0.15	0.030	0.19	0.090	0.17	0.070	-	-
95	diallyl disulfide isomere	1479	4.7	1.4	5.8	1.1	5.4	0.20	4.3	0.10	4.3	1.0	6.0	1.7	4.8	1.3	3.8	0.70
96	diallyl disulfide isomere	1483	1.7	0.60	1.3	0.30	0.90	0.35	0.73	0.10	1.4	0.20	1.4	0.60	1.2	0.40	-	- 0
102	methylpropyl trisulfide ${ }^{\text {e }}$	1529	0.064	0.008	0.005	0.005	0.043	0.006	0.020	0.007	0.067	0.012	0.037	0.014	0.047	0.018	0.031	0.008
117	methyl(methylthio)methyl disulfide ${ }^{\text {e }}$	1662	0.19	0.030	0.051	0.014	0.083	0.048	0.034	0.015	0.15	0.020	0.081	0.035	0.037	0.007	0.026	0.011
131	dimethyl tetrasulfide ${ }^{\text {e }}$	1750	0.23	0.060	0.040	0.034	-	-	-	-	0.15	0.050	-	-	0.018	0.022	-	
139	diallyl trisulfide ${ }^{\text {e }}$ aldehydes (23)	1789	0.95	0.23	0.70	0.25	0.68	0.13	0.50	0.13	0.92	0.11	1.0	0.60	1.2	0.30	0.59	0.15
3	2-methylpropanal	810	-	-	-	-	0.007	0.002	0.016	0.004	-	-	-	-	0.013	0.006	0.025	0.010
9	2-methylbutanal	907	0.054	0.008	0.018	0.008	0.009	0.003	0.045	0.031	0.059	0.009	0.035	0.013	0.036	0.010	0.058	0.024
10	3-methylbutanal	911	0.093	0.013	0.030	0.009	0.022	0.003	0.039	0.006	0.10	<0.01	0.080	0.036	0.056	0.024	0.055	0.059
15	pentanal	971	0.033	0.004	0.029	0.019	0.026	0.033	0.074	0.12	0.035	0.010	0.062	0.008	0.065	0.061	0.075	0.15
22	(E)-2-butenal	1034	1.0	0.20	0.24	0.050	0.99	0.040	0.87	0.17	1.2	0.30	0.32	0.14	1.2	0.10	1.0	0.20
28	hexanal	1075	0.29	0.020	0.089	0.008	0.072	0.016	0.10	0.010	0.20	0.040	0.11	0.030	0.076	0.013	0.093	0.020
29	2-methyl-(E)-2-butenal	1088	0.065	0.021	0.027	0.006	0.012	0.009	0.005	0.004	0.078	0.012	0.053	0.008	0.005	0.005	-	-
39	(E)-2-pentenal	1125	0.035	0.013	0.008	0.010	-	-	0.051	0.044	0.031	0.006	0.030	0.005	-	-	0.022	0.044
49	heptanal	1181	0.038	0.012	0.031	0.011	0.023	0.003	0.041	0.010	0.033	0.005	0.031	0.016	0.021	0.003	0.028	0.010
56	(E)-2-hexenal	1214	0.92	0.82	0.25	0.010	0.15	0.010	0.083	0.013	0.50	0.29	0.27	0.020	0.24	0.11	0.074	0.016
75	(E)-2-heptenal	1320	0.051	0.007	0.021	0.004	0.029	0.004	0.039	0.018	0.046	0.005	0.037	0.017	0.039	0.003	0.044	0.033
84	nonanal	1390	0.084	0.032	0.062	0.012	0.048	0.005	0.087	0.015	0.059	0.010	0.050	0.016	0.034	< 0.001	0.043	0.011
85	(E,E)-2,4-hexadienal	1398	-	-	-	-	0.011	0.010	0.038	0.012	-	-	-	-	0.047	0.011	0.026	0.007
93	2-furancarboxaldehyde	1458	0.048	0.054	0.040	0.027	0.029	0.014	0.005	0.003	0.092	0.021	0.082	0.033	0.032	0.009	0.13	0.02
97	(E,E)-2,4-heptadienal	1491	0.057	0.013	0.047	0.028	0.034	0.010	0.094	0.018	0.058	0.012	0.082	0.039	0.043	0.015	0.072	0.018
101	benzaldehyde	1522	0.052	0.042	0.024	0.028	0.012	0.012	0.014	0.024	0.025	0.011	0.076	0.040	0.006	0.002	0.006	0.003
106	(E, Z)-2,6-nonadienal	1580	-	-	0.011	0.009	0.014	0.008	0.048	0.012	-	-	0.012	0.004	0.011	0.013	0.032	0.017
111	β-cyclocitrale	1622	0.022	0.027	-	-	0.022	0.011	0.054	0.009	-	-	-	-	0.034	0.014	0.024	0.015
113	phenylacetal dehyde	1638	0.15	0.070	0.071	0.034	0.091	0.052	0.11	0.020	0.18	0.010	0.12	0.040	0.14	0.030	0.12	0.020
114	(E)-2-decenal	1642	-	-	-	-	-	-	0.030	0.002	-	-	-	-	-	-	0.021	0.012
120	(Z)-citral	1680	0.25	0.020	0.12	0.11	0.13	0.020	0.13	0.020	0.23	0.030	0.24	0.080	0.18	0.020	0.14	0.010
128	(E)-citral	1731	0.32	0.030	0.27	0.10	0.17	0.030	0.17	0.060	0.28	0.020	0.26	0.15	0.034	0.018	0.18	0.040
141	(E,E)-2,4-decadienal ketones (10)	1808	0.096	0.018	0.043	0.029	0.029	0.007	0.10	0.020	0.074	0.008	0.084	0.058	0.036	0.020	0.093	0.019
8	2-butanone	894	-	-	-	-	-	-	-	-	-	-	0.019	0.039	-	-	0.021	0.041
14	2,3-butanedione	965	0.074	0.008	0.083	0.016	0.14	0.002	0.52	0.21	0.083	0.016	0.17	0.03	0.40	0.13	1.2	0.70
25	2,3-pentanedione	1055	- 0.007	-	-	- 0.	-	- 0.027	0.012	0.014	0.003	0.005	- 0.047	- 0.007	-	-	-	-
37	(E)-3-penten-2-one	1121	0.007	0.005	0.036	0.014	0.023	0.027	-	-	0.008	0.006	0.047	0.007	0.059	0.042	0.046	0.055

 $00^{\circ} 0^{\circ} 0^{\circ} 00^{\circ} 0^{\circ} 0^{\circ}$
 $0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$ io o'o $0^{\circ} \mathrm{N}$

 ơo ơo ơo ơo ơo
に

 O $0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$

 ó ó ó o ó ó ó ó ó ó

 $0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$

3-hydroxy-2-butanone
6-methyl-5-hepten-2-one
1-(2-furanyl)ethanone ${ }^{\text {e }}$
2-undecanone
geranylactone
β-i

 pentanol

4-penten-1-ol
2-ethyl-1-butanol
(Z)-2-penten-1-ol

hexanol
(Z)-3-hexen-1-ol

octanol
(E)-2-octen-1-ol
2-furanmethanol
 1,8-cineole
camphor
linalool
 $\bar{\square}$
nerolidol
 α-pinene
camphene β-pinene sabinene
β-myrcene β-phellandrene γ-terpinene (E)-ocimene ${ }^{\mathrm{e}}$ caryophyllene
farnesene isomere farnesene isomere

Table 2 (Continued)

no. ${ }^{\text {a }}$	compound name by class	$\mathrm{RI}^{\text {b }}$	$C^{\text {a }}$								FS ${ }^{\text {a }}$							
			day 0		day 7		day 15		day 30		day 0		day 7		day 15		day 30	
			MAR ${ }^{\text {c }}$	SD ${ }^{\text {d }}$	MAR	SD 127												
126	γ-cadinene ${ }^{\text {e }}$	1722	0.093	0.11	0.053	0.062	0.064	0.043	0.10	0.010	0.17	0.020	0.11	0.050	0.16	0.020	0.12	0.020
127	β-bisabolene ${ }^{\text {e }}$	1727	0.74	0.12	0.55	0.17	0.47	0.10	0.47	0.090	0.59	0.03	0.42	0.18	0.66	0.04	0.48	0.10
129	5bH,7b,10a-selina-4(14),11-diene ${ }^{\text {e }}$	1733	0.25	0.03	0.18	0.07	0.11	0.03	0.11	0.020	0.21	0.02	0.15	0.08	0.14	0.02	0.10	0.020
130	farnesene isomere	1746	0.66	0.08	0.47	0.16	0.29	0.11	0.27	0.050	0.52	0.03	0.35	0.17	0.034	0.067	0.10	0.12
133	farnesene isomere	1758	0.088	0.013	0.073	0.035	0.029	0.008	0.030	0.010	0.076	0.013	0.063	0.041	0.021	0.014	0.025	0.008
134	δ-cadinene ${ }^{\text {e }}$	1760	0.053	0.005	0.022	0.005	0.051	0.039	0.041	0.006	0.041	0.009	0.029	0.007	0.038	0.005	0.036	0.009
136	β-sesquiphellandrene ${ }^{\text {e }}$	1771	1.1	0.20	0.90	0.28	0.41	0.22	0.49	0.080	0.91	0.060	0.63	0.28	0.052	0.007	0.16	0.15
137	ar-curcumene ${ }^{\text {e }}$	1773	0.36	0.02	0.24	0.04	0.20	0.04	0.26	0.050	0.32	0.030	0.22	0.080	0.37	0.020	0.27	0.060
143	germacrene $\mathrm{B}^{\text {e }}$	1836	0.090	0.004	0.075	0.025	0.052	0.024	0.049	0.010	0.084	0.010	0.072	0.034	0.030	0.007	0.035	0.012
thiocyanates (6)																		
47	isopropyl isothiocyanate ${ }^{e}$	1177	0.062	0.026	0.015	0.0062	-	-	-	-	0.065	0.039	0.028	0.003	-	-	-	-
66	methyl thiocyanate ${ }^{\text {e }}$	1266	2.4	0.90	1.5	0.50	0.82	0.020	0.79	0.030	2.8	0.080	2.2	0.40	0.88	0.050	0.74	0.13
92	3-butenyl isothiocyanate ${ }^{\text {e }}$	1453	1.9	0.30	4.5	1.0	1.4	0.30	0.36	0.050	1.9	0.30	2.8	0.10	1.6	0.40	0.35	0.050
107	hexyl isothiocyanate ${ }^{\text {e }}$	1588	0.051	0.006	0.046	0.020	0.029	0.006	-	-	0.042	0.007	0.045	0.016	0.033	0.009	-	-
121	heptyl isothiocyanate ${ }^{\text {e }}$	1696	0.13	0.04	0.081	0.032	0.057	0.032	0.048	0.007	0.093	0.024	0.069	0.033	0.059	0.013	0.019	0.038
157	2-phenylethyl isothiocyanate ${ }^{e}$ acids (9)	2234	9.7	2.1	7.4	0.10	5.4	0.60	2.9	0.40	11.8	1.0	8.4	0.40	5.9	1.2	2.6	0.60
90	acetic acid	1447	0.074	0.052	0.022	0.0267	0.334	0.316	6.3	0.70	0.039	0.029	0.042	0.013	2.0	0.70	5.4	1.5
105	isobutyric acid	1564	-	-	-	-	-	-	-	-	-	-	-	-	0.011	0.005	0.11	0.084
112	butanoic acid	1624	-	-	-	-	-	-	-	-	-	-	-	-	0.062	0.037	0.11	0.038
118	isovaleric acid	1667	-	-	-	-	-	-	-	-	-	-	-	-	0.039	0.010	0.14	0.03
145	hexanoic acid	1874	-	-	-	-	-	-	-	-	0.13	0.015	-	-	-	-	-	-
153	octanoic acide	2061	-	-	-	-	-	-	0.074	0.026	-	-	-	-	0.060	0.012	0.14	0.074
154	isonicotinic acide	2088	0.77	0.29	0.81	0.22	0.13	0.050	0.033	0.006	0.92	0.10	0.41	0.050	0.074	0.002	0.044	0.010
155	nonanoic acid ${ }^{\text {a }}$	2166	-	-	-	-	0.031	0.020	0.078	0.023	-	-	-	-	0.051	0.010	0.096	0.016
159	decanoic acid ${ }^{\text {e }}$	2268	-	-	-	-	-	-	-	-	-	-	-	-	0.071	0.018	0.10	0.010
esters (11)																		
6	ethyl acetate	880	1.4	0.60	0.92	0.30	0.34	0.11	0.47	0.10	1.7	0.30	1.1	0.30	0.97	0.090	0.84	0.24
44	ethyl 2-butenoate ${ }^{\text {e }}$	1158	-	-	0.001	0.003	0.014	0.010	0.008	0.005	-	-	-	-	0.009	0.002	0.004	0.005
50	methyl hexanoate	1181	-	-	-	-	-	-	-	- 0	-	-	- 0.00	- 0.00	- 0.010	-	0.015	0.006
60	ethyl hexanoate	1228	-	-	-	-	-	-	0.029	0.003	-	-	0.008	0.009	0.010	0.004	0.12	0.040
79	2-methylpropyl hexanoate ${ }^{\text {e }}$	1347	0	-	- 0	0	-	-	-	-	0	0	-	-	-	-	0.003	0.007
132	geranyl acetate ${ }^{\text {e }}$	1753	0.094	0.009	0.058	0.039	-	-	-	-	0.078	0.006	0.27	0.46	0.008	0.009	-	-
138	methyl 2-hydroxybenzoate ${ }^{\text {e }}$	1778	0.039	0.004	0.042	0.038	0.066	0.020	0.099	0.017	-	-	-	-	0.12	0.030	0.10	0.030
142	2-phenylethyl acetate	1816	-	-	-	-	-	-	0.137	0.035	-	-	-	-	-	-	0.27	0.080
156	methyl hexadecanoate ${ }^{e}$	2210	-	-	0.058	0.091	0.017	0.003	0.30	0.31	-	-	-	-	0.16	0.27	0.31	0.20
158	ethyl hexadecanoate ${ }^{\text {e }}$	2246	-	-	0.21	0.030	0.26	0.14	0.35	0.040	-	-	0.19	0.010	0.24	0.090	0.39	0.16
160	diethyl 1,2-benzenedicarboxylate ${ }^{\text {e }}$	2366	0.086	0.089	0.37	0.13	0.077	0.073	0.10	0.060	0.24	0.040	0.21	0.05	0.091	0.027	0.11	0.10
76	2,6-dimethylpyrazine	1327	0.022	0.004	0.002	0.005	-	-	-	-	0.020	0.002	0.003	0.005	- 0.037	- 0.015	-	-
119	3,5-dimethyl-1H-pyrazole ${ }^{\text {e }}$	1675	-	-	-	-	-	- 0.08	-	-	-	-	0.056	0.032	0.037	0.015	0.046	0.021
78	pentanedinitrile ${ }^{\text {e }}$	1343	1.7	0.20	1.6	0.30	0.70	0.080	0.53	0.040	1.9	0.40	2.0	0.10	0.82	0.030	0.64	0.15
149	phenylacetonitrile ${ }^{\text {e }}$	1927	0.031	0.014	0.010	0.003	0.004	0.005	-	-	0.028	0.007	0.014	0.006	-	-	-	-
152	benzenepropanenitrile ${ }^{\text {e }}$	2041	2.1	0.80	1.7	0.10	0.95	0.12	0.34	0.080	2.9	0.30	1.9	0.40	0.70	0.16	0.47	0.090
aromatic compounds (6)																		
36	ethylbenzene	1118	0.007	0.005	0.004	0.005	0.25	0.020	0.11	0.080	0.007	0.010	0.006	0.005	0.26	0.030	0.12	0.050
38	p-xylene	1125	0.011	0.002	-	-	0.072	0.023	0.063	0.022	0.006	0.007	-	-	0.050	0.011	0.11	0.13
40	m-xylene	1136	0.022	0.005	0.021	0.006	0.14	0.03	0.13	0.03	0.021	0.003	0.031	0.011	0.16	0.028	0.15	0.11
48	o-xylene	1177	-	-	0.002	0.003	0.072	0.007	0.064	0.003	0.010	0.012	0.003	0.006	0.076	0.008	0.11	0.030

pounds may play predominant roles in the characteristic flavor of Kimchi with their garlic-, cooked cabbage-, onion-, and green onion-like odors. Yu et al. (1994b) reported that allicin, the major flavor compound of garlic, was readily degraded to allyl alcohol and cysteine during heating and that decomposition of cysteine gave rise to methyl sulfides, thiazoles, thrithiolanes, and cyclic sulfur-containing compounds. The majority of the sulfur-containing compounds detected in this study were methyl sulfides. Despite our efforts to maintain a moderate temperature ($<65{ }^{\circ} \mathrm{C}$) during V-SDE, it is possible that some of these compounds were artifacts of our isolation method.

There were many unidentified compounds having odor properties reminescent of sulfur compounds (e.g., $\mathrm{RI}=1177,1555,1576,1585,1593,1603,1676,1724$, 1836, 1881, 1927, 1949, 1998, 2030, 2036, and 2098). Most had low odor intensities, except for the hot rubberand wild onion-like (RI = 1177), garlic salt- and mustardlike (RI = 1576), sweet, meaty, and garlic-like (RI = 1836), phenolic, piney, and green garlic-like ($\mathrm{RI}=1949$), and stale, garlic-, and wild green onion-like (RI = 1998) odorants. 3-(Methylthio)propanal and dithio(1-propenyl) propionate, described as baked/boiled potato and roasted and nutty potato-like, respectively, had distinctly different odor properties compared with other sulfur compounds. 3-(M ethylthio)propanal may have been formed via Strecker degradation of methionine (F orss, 1979).

With the exception of (E)-2-butenal, (E)-2-hexenal, (E)-citral, (Z)-citral, phenylacetaldehyde, 3-methylbutanal, and (E, E)-2,4-decadienal, aldehydes were found in low abundance in FS and C (Table 2). Among the aldehydes, (E, Z)-2,6-nonadienal, phenylacetaldehyde, and (E, E)-2,4-decadienal had the highest odor intensities in both FS and C throughout the fermentation period, followed by 3-methylbutanal. These compounds might contribute to the overall flavor of Kimchi because of their low odor threshold values (t), e.g., (E, E)-2,4decadienal ($\mathrm{t}=0.03 \mathrm{ppb}$ in water; Buttery et al., 1988), (E, Z)-2,6-nonadienal ($\mathrm{t}=0.1 \mathrm{ppb}$; Milo and Grosch, 1993), 3-methylbutanal ($\mathrm{t}=0.4 \mathrm{ppb}$; Guth and Grosch, 1993), and phenylacetaldehyde ($t=4 \mathrm{ppb}$; Buttery et al., 1988). (E,E)-2,4-Decadienal and (E,Z)-2,6-nonadienal were reported as major aroma compounds in cabbage (Buttery et al., 1976). (E ,Z)-2,6-N onadienal, having a cucumber-like odor, can be derived from omega-3 fatty acids (J osephson et al., 1984) and is readily converted to (Z)-4-heptenal through the retro-aldol degradation reaction (J osephson and Lindsay, 1987). (Z)-4-Heptenal (rancid and fishy) was detected in both FS and C by GC/O at low odor intensities. Park (1995) reported that linoleic and linolenic acids composed 44$60 \%$ of the total free fatty acids in Kimchi. 3-Methylbutanal (dark chocolatelike), detected at low odor intensities in both FS and C, may have originated from Strecker or microbiological degradation of amino acids (Collin et al., 1993). Thecitral isomers identified in both FS and C are major volatile constituents of ginger (Wu and Yang, 1994), an ingredient of Kimchi, and are readily degraded into 6-methyl-5-hepten-2-one by heating (Chen and Ho, 1989).

Two terpene derivatives (geranylacetone and β-ionone) were found in high abundance among 10 ketones detected. These compounds contribute fruity odors in plants (K awakami and Kobayashi, 1991; Takeoka et al., 1990). However, these compounds were not detected by
Table 3. Mean Odor Intensities of Aroma-Active Compounds in Kimchi during Fermentation ${ }^{\text {a }}$

no. ${ }^{\text {b }}$	RI' compound	methods of identification	$\mathrm{C}^{\text {d }}$				FS ${ }^{\text {d }}$				odor descriptione
			day 0	day 7	day 15	day 30	day 0	day 7	day 15	day 30	
4	833 propanethiol	MS	0.67 (1.03)f,g	0.67 (1.03) ${ }^{9}$	0.33 (0.52) ${ }^{\text {g }}$	0.00 (0.0) ${ }^{\text {g }}$	0.67 (1.03) ${ }^{\text {GH }}$	2.33 (1.97) ${ }^{\text {G }}$	0.83 (0.98) ${ }^{\text {GH }}$	0.00 (0.0) ${ }^{\text {H }}$	on
5	869 methylthiiran	MS	2.67 (1.03)9	$5.17(0.98)^{\mathrm{h}}$	2.33 (1.03) ${ }^{9}$	2.50 (2.26) ${ }^{\text {g }}$	$2.00(0.89)^{\text {H }}$	4.50 (1.38) ${ }^{\text {G }}$	4.33 (1.37) ${ }^{\mathrm{G}}$	3.17 (0.75) ${ }^{\text {GH }}$	fresh-cut garlic
10	911 3-methylbutanal	MS, RI, odor	1.67 (1.03) ${ }^{\text {gh }}$	2.67 (1.03)9	$0.00(0.0)^{\mathrm{h}}$	$0.67(0.52)^{\mathrm{h}}$	0.83 (0.75) ${ }^{\text {G }}$	$1.50(1.64)^{G}$	$1.33(1.37)^{\mathrm{G}}$	$1.50(0.55)^{\mathrm{G}}$	dark chocolate, malty
11	930 ethanol	MS', RI, odor	0.00 (0.0)9	$0.00(0.0)^{9}$	0.67 (1.03)9	0.00 (0.0) ${ }^{\text {g }}$	$0.00(0.0)^{\mathrm{H}}$	$0.00(0.0)^{\mathrm{H}}$	$0.00(0.0)^{\mathrm{H}}$	$1.17(1.33)^{G}$	ethanol, sweet
13	943 3-(methylthio)-1-propene	MS	0.67 (1.03) ${ }^{\text {gh }}$	0.33 (0.52) ${ }^{\text {gh,* }}$	1.83 (1.47)9	0.00 (0.0) ${ }^{\text {h }}$	1.83 (1.47) ${ }^{\text {G }}$	1.83 (0.75) G,*	3.00 (2.00) ${ }^{\mathrm{G}}$	1.00 (1.10) ${ }^{\mathrm{G}}$	meaty, garlic, onion
14	963 2,3-butanedione	MS, RI, odor	$1.17(0.41)^{9}$	1.50 (0.84)9 ${ }^{9}$	2.83 (1.33) gh	4.33 (1.03) ${ }^{\text {h }}$	1.00 (0.00)	2.17 (1.17) ${ }^{\mathrm{HI}}$	3.50 (1.64) ${ }^{\text {GH }}$	4.00 (0.89) ${ }^{\mathrm{G}}$	buttery, cream cheese
19	1008α-pinene	MS, RI, odor	0.33 (0.52)9	0.33 (0.52) ${ }^{9}$	0.67 (0.52) ${ }^{9}$	0.67 (1.03)9	0.67 (0.52) ${ }^{\text {GH }}$	$0.00(0.0)^{\mathrm{H}}$	1.00 (0.89) ${ }^{\text {GH }}$	$1.67(0.52)^{\mathrm{G}}$	plastic bottle, piney
	1027 unknown		0.00 (0.0) ${ }^{9}$	$0.33(0.52)^{9}$	0.67 (1.03)9	$0.00(0.0)^{9}$	$0.67(0.52)^{\mathrm{G}}$	1.50 (1.22) ${ }^{\text {G }}$	1.33 (0.52) ${ }^{\mathrm{G}}$	$0.33(0.52)^{\mathrm{G}}$	fruity
23	1038 propanol	MS, RI, odor	1.17 (0.98) ${ }^{\text {g }}$	1.33 (1.37)9	2.00 (1.10) ${ }^{9}$	0.00 (0.0) ${ }^{\text {g }}$	0.00 (0.0) ${ }^{\text {G }}$	1.00 (0.00) ${ }^{\mathrm{G}}$	$1.00(0.00)^{\mathrm{G}}$	$2.17(2.04)^{\mathrm{G}}$	sweet, fr
	1054 unknown		0.00 (0.0) ${ }^{9}$	0.00 (0.0) ${ }^{\text {9 }}$	0.00 (0.0) ${ }^{\text {9 }}$	0.00 (0.0)9,*	$0.00(0.0)^{\mathrm{H}}$	$0.67(1.03)^{\text {GH }}$	$0.67(0.52)^{\text {GH }}$	$1.67(0.52)^{\mathrm{G}, *}$	sweet, ester
27	1058 dimethyl disulfide	MS, RI, odor	$2.00(0.63)^{9}$	0.00 (0.0) ${ }^{\text {h }}$	1.00 (1.55) ${ }^{\text {gh }}$	$0.00(0.0)^{\text {h }}$	0.67 (1.03) ${ }^{\text {G }}$	0.00 (0.0) ${ }^{\text {G }}$	$0.00(0.0)^{\text {G }}$	0.00 (0.0) ${ }^{\text {G }}$	sour, sulfury, rotten onion
28	1068 hexanal	MS, RI, odor	0.33 (0.52)9	0.00 (0.0) ${ }^{\text {g }}$	0.00 (0.0) ${ }^{9}$	0.00 (0.0) ${ }^{9}$	0.00 (0.0) ${ }^{\text {b }}$	0.00 (0.0) ${ }^{\text {G }}$	0.33 (0.52) ${ }^{\mathrm{G}}$	0.00 (0.0) ${ }^{\text {G }}$	
	1075 unknown		$0.00(0.0)^{9}$	1.00 (0.89) ${ }^{9}$	0.67 (1.03)9	0.83 (0.75)9	0.67 (0.52) ${ }^{\text {GH }}$	0.00 (0.0) ${ }^{\mathrm{H}}$	$1.83(0.98)^{\text {G }}$	0.67 (1.03) ${ }^{\text {GH }}$	sour, onion, rubber
	1084 unknown		0.83 (0.75)9	0.50 (0.84)9	0.33 (0.52)9	1.17 (1.83)9	0.67 (0.52) ${ }^{\text {G }}$	$0.00(0.0)^{G}$	0.00 (0.0) ${ }^{\text {G }}$	$0.67(1.03)^{\text {G }}$	plastic, so
	1128 unknown		0.00 (0.0) ${ }^{9}$	0.00 (0.0) ${ }^{9}$	0.17 (0.41) ${ }^{9}$	0.67 (1.03) ${ }^{\text {g }}$	0.00 (0.0) ${ }^{\text {G }}$	$0.00(0.0)^{\mathrm{G}}$	0.00 (0.0) ${ }^{\text {G }}$	0.00 (0.0) ${ }^{\text {G }}$	grassy, hexanal
	1177 unknown		3.00 (0.63) ${ }^{9}$	3.00 (0.89) ${ }^{9}$	2.17 (0.98) ${ }^{\text {h }}$	1.67 (0.52) ${ }^{\text {h }}$	3.17 (1.47) ${ }^{\text {G }}$	2.83 (0.41) ${ }^{\text {GH }}$	1.50 (0.55) ${ }^{\text {G }}$	1.67 (0.52) ${ }^{\text {H }}$	hot rubber, wild onion
53	1195 1,8-cineole	MS, RI, odor	0.67 (1.03)9	0.00 (0.0) ${ }^{9}$	1.00 (1.55) ${ }^{9}$	1.00 (1.55)9	0.67 (1.03) ${ }^{\text {G }}$	0.67 (1.03) ${ }^{\text {G }}$	0.00 (0.0) ${ }^{\text {G }}$	1.00 (1.10) ${ }^{\text {G }}$	camphorous, menthol
55	1200 3-methyl-1-butanol	MS, RI, odor	0.00 (0.0) ${ }^{9}$	0.00 (0.0) ${ }^{9}$	0.00 (0.0) ${ }^{\text {9 }}$	$2.83(0.75)^{\mathrm{h}}$	$0.00(0.0)^{\mathrm{H}}$	$0.00(0.0)^{\mathrm{H}}$	0.00 (0.0) ${ }^{\mathrm{H}}$	3.67 (3.01) ${ }^{\text {G }}$	chocolate
59	1218 methylpropyl disulfid	MS, RI, odor	1.00 (1.55) ${ }^{9}$	0.00 (0.0) ${ }^{9}$	1.00 (1.55) ${ }^{9}$	0.00 (0.0) ${ }^{\text {g }}$	0.00 (0.0) ${ }^{\text {G }}$	$0.33(0.52)^{6}$	0.67 (1.03) ${ }^{\text {G }}$	0.00 (0.0) ${ }^{\text {G }}$	gar
	1229 (Z)-4-Heptenal	RI, odor	0.33 (0.52)9	0.00 (0.0) ${ }^{9}$	0.00 (0.0) ${ }^{\text {g }}$	1.33 (2.07) ${ }^{9}$	0.00 (0.0) ${ }^{\text {G }}$	$0.33(0.52)^{\mathrm{G}}$	$0.33(0.52)^{\mathrm{G}}$	0.00 (0.0) ${ }^{\mathrm{G}}$	rancid, fishy
	1243 unknown		0.67 (1.03)9	0.00 (0.0) ${ }^{\text {g }}$	0.00 (0.0)9,*	2.17 (0.98) ${ }^{\text {h }}$	4.00 (1.10) ${ }^{\text {GH }}$	1.33 (2.16)	4.67 (1.03) ${ }^{\text {G,* }}$	$2.17(0.98)^{\mathrm{HI}}$	soil, rubbery, plant root
	1250 methyl-(Z)-propenyl disulfide	MS	2.33 (1.51) ${ }^{\text {gh }}$	1.33 (1.37) ${ }^{\text {hi }}$	3.33 (1.03)9,	0.00 (0.0) ${ }^{\text {i }}$	$0.00(0.0)^{\text {H }}$	1.67 (1.21) ${ }^{\text {G }}$	0.00 (0.0) ${ }^{\text {H,* }}$	$0.00(0.0)^{\text {H }}$	garlic
67	1266 methylallyl disulfide	MS	4.67 (1.37) ${ }^{9}$	4.00 (1.55) ${ }^{\text {gh }}$	3.67 (1.21) ${ }^{\text {gh }}$	3.00 (1.10) ${ }^{\text {h }}$	4.17 (0.98) ${ }^{\text {G }}$	3.17 (2.23)	3.83 (2.23) ${ }^{\mathrm{G}}$	$1.67(0.82)^{\mathrm{H}}$	garlic salt
	1283 1-octen-3-one	RI, odor	3.17 (2.56) ${ }^{9}$	0.00 (0.0) ${ }^{\text {h }}$	2.33 (1.97) ${ }^{\text {gh }}$	2.33 (1.86) ${ }^{\text {gh }}$	2.17 (1.83) ${ }^{\text {G }}$	0.00 (0.0) ${ }^{\text {G }}$	1.83 (1.72) ${ }^{\text {G }}$	0.67 (1.03) ${ }^{\text {G }}$	mushroom, earthy
	1319 2-acetyl-1-pyrroline	RI, odor	5.00 (1.10)9	4.00 (1.26) ${ }^{9}$	0.00 (0.0) ${ }^{\text {h }}$	0.00 (0.0) ${ }^{\text {h }}$	$5.17(0.75)^{\mathrm{G}}$	$4.83(0.98)^{G}$	$0.00(0.0)^{\mathrm{H}}$	$0.00(0.0)^{\mathrm{H}}$	popcorn
82	1365 dimethyl trisulfide	MS, RI, odor	$5.50(0.84)^{9}$	5.50 (0.55) ${ }^{9}$	4.83 (0.75)9	4.83 (0.41) ${ }^{\text {g }}$	5.50 (0.55) ${ }^{\text {G }}$	4.50 (1.38) ${ }^{\text {G }}$	$4.83(1.47)^{\mathrm{G}}$	$4.67(1.03)^{\mathrm{G}}$	cooked/ro
90	1434 acetic acid	MS, RI, odor	0.00 (0.0)9	0.00 (0.0) ${ }^{\text {g }}$	$0.00(0.0)^{9}$	2.17 (1.83) ${ }^{\text {h }}$	0.00 (0.0) ${ }^{\text {G }}$	$0.00(0.0)^{\mathrm{G}}$	1.33 (2.07) ${ }^{\mathrm{G}}$	1.50 (2.35) ${ }^{\text {G }}$	vinegar
91	1436 3-(methylthio)propanal	MS, RI, odor	4.17 (3.25)9	4.00 (3.10) ${ }^{9}$	3.50 (2.95)9	3.17 (2.56) ${ }^{9}$	3.67 (2.88) ${ }^{\text {G }}$	4.00 (3.10) ${ }^{\text {G }}$	3.83 (2.99) ${ }^{\text {G }}$	$3.67(2.88)^{\mathrm{G}}$	baked/boiled potato
	1448 dithio(1-propenyl) propionate		4.00 (1.10) ${ }^{9}$	1.33 (2.16) ${ }^{9}$	3.00 (2.37) ${ }^{\text {g }}$	0.00 (0.0) ${ }^{\text {g }}$	2.67 (2.16) ${ }^{\text {G }}$	2.50 (1.76) ${ }^{\text {G }}$	3.17 (2.48) ${ }^{\text {G }}$	1.00 (1.67) ${ }^{\text {G }}$	roasted/nutty potato
	1466 diallyl disulfide isomer	MS	4.50 (1.38) ${ }^{9}$	5.33 (0.82) ${ }^{\text {g,* }}$	4.67 (1.21) ${ }^{9}$	4.67 (1.51) ${ }^{\text {g }}$	$4.50(1.52)^{\text {GH }}$	4.00 (1.10) ${ }^{\text {GH,* }}$	5.33 (0.82) ${ }^{\mathrm{G}}$	3.33 (1.75) ${ }^{\text {H }}$	fresh garlic, hot spicy
96	1470 diallyl disulfide isomer	MS	3.00 (2.37) ${ }^{9}$	4.50 (1.22) ${ }^{9}$	0.00 (0.0) ${ }^{\text {h }}$	0.00 (0.0) ${ }^{\text {h }}$	$4.33(1.51)^{\mathrm{G}}$	1.33 (1.03) ${ }^{\mathrm{G}}$	2.83 (2.23) ${ }^{\mathrm{G}}$	1.67 (1.86) ${ }^{\text {G }}$	green onion
	1485 unknown		4.83 (1.17) ${ }^{9}$	4.17 (1.17) ${ }^{9}$	4.83 (0.75) ${ }^{9}$	4.83 (0.98) ${ }^{9}$	$5.17(0.75)^{\mathrm{GH}}$	4.83 (0.98) ${ }^{\text {GH }}$	5.67 (0.82) ${ }^{\text {G }}$	$4.17(0.75)^{\mathrm{H}}$	
	1510 unknown		4.67 (1.37) ${ }^{9}$	5.50 (0.55)9,*	4.50 (1.64)9	4.67 (1.21)9	$5.17(0.98)^{\mathrm{G}}$	4.33 (1.03) ${ }^{\mathrm{G}, *}$	4.67 (1.03) ${ }^{\mathrm{G}}$	$4.50(0.55)^{\mathrm{G}}$	spicy, tree root, floral
102	1519 methylpropyl trisulfide	MS	2.00 (1.79) ${ }^{9}$	2.67 (2.07) ${ }^{\text {g }}$	2.33 (2.25) ${ }^{\text {g }}$	2.83 (1.83)9	1.83 (1.47) ${ }^{\text {GH }}$	0.67 (1.03) ${ }^{\text {c }}$	$2.67(1.03)^{\mathrm{G}}$	1.67 (1.37) ${ }^{\text {H }}$	bitter, stale, pungent, spic
103	1532 linalool	MS, RI, odor	4.50 (0.84)9	3.83 (1.33)9	3.67 (0.52)9	3.83 (0.98)9	3.17 (1.17) ${ }^{\mathrm{G}}$	$2.83(0.98)^{G}$	4.17 (1.17) ${ }^{\text {G }}$	3.17 (1.17) ${ }^{\text {G }}$	floral, spicy, flowers
	1555 unknown		0.67 (1.03) ${ }^{9}$	$0.00(0.0)^{9}$	0.00 (0.0) ${ }^{9}$	$0.00(0.0)^{\text {g }}$	0.33 (0.52) ${ }^{\text {G }}$	$0.67(1.03)^{G}$	$0.00(0.0)^{\text {G }}$	0.00 (0.0) ${ }^{\mathrm{G}}$	nutty, garlic
106	1570 (E,Z)-2,6-nonadienal	MS, RI, odor	2.33 (2.25) ${ }^{9}$	3.33 (1.51) ${ }^{\text {gh }}$	3.00 (2.37) ${ }^{\text {gh }}$	4.17 (1.47) ${ }^{\text {h }}$	$3.67(0.52)^{\mathrm{G}}$	3.83 (1.17) ${ }^{\text {G }}$	3.00 (0.89) ${ }^{\text {G }}$	3.00 (1.10) ${ }^{\text {G }}$	cucumber
	1576 unknown		5.17 (1.33) ${ }^{9}$	5.50 (0.84)9	4.83 (0.41)9	3.00 (2.37) ${ }^{\text {g }}$	$5.33(0.82)^{\mathrm{G}}$	4.83 (1.17) ${ }^{\text {G }}$	$4.50(1.38)^{\mathrm{G}}$	2.33 (1.37) ${ }^{\mathrm{H}}$	garlic salt, mustard
	1585 unknown		1.33 (2.07) ${ }^{9}$	$0.67(1.03)^{9}$	$1.00(1.55)^{9}$	$0.00(0.0)^{9}$	$1.83(2.04)^{\mathrm{G}}$	$0.00(0.0)^{\text {G }}$	0.00 (0.0) ${ }^{\mathrm{G}}$	$0.00(0.0)^{\text {G }}$	garlic salt, rancid fish
	1593 unknown		1.00 (1.55) ${ }^{9}$	$0.00(0.0)^{9}$	1.00 (1.55)9	0.00 (0.0) ${ }^{9}$	1.33 (2.07) ${ }^{\text {G }}$	$1.00(1.10)^{\text {G }}$	$0.00(0.0)^{\mathrm{G}}$	$0.50(0.84)^{\text {G }}$	garlic salt
	1603 unknown		2.33 (1.86) ${ }^{9}$	1.67 (1.37) ${ }^{9}$	0.00 (0.0) ${ }^{9}$	0.00 (0.0) ${ }^{\text {g }}$	0.00 (0.0) ${ }^{\text {G }}$	0.00 (0.0) ${ }^{\text {G }}$	0.67 (1.03) ${ }^{\text {G }}$	0.00 (0.0) ${ }^{\text {G }}$	garlic salt
113	1626 phenylacetaldehyde	MS, RI, odor	3.83 (1.47)9	3.33 (1.03)9	2.83 (0.75)9	1.00 (1.55) ${ }^{\text {h }}$	4.00 (1.41) ${ }^{\text {G }}$	3.17 (1.83) ${ }^{\text {G }}$	3.33 (1.37) ${ }^{\mathrm{G}}$	2.50 (1.76) ${ }^{\text {G }}$	floral, spicy, honeysuckle
117	1650 methyl(methylthio)methyl disulfide	MS	2.33 (2.58) ${ }^{\text {g }}$	2.33 (1.51) ${ }^{9}$	3.17 (1.47) ${ }^{9}$	$1.00(0.89)^{9}$	$2.83(0.41)^{\text {G }}$	$1.00(1.55)^{\mathrm{HI}}$	2.00 (1.55) ${ }^{\text {GH }}$	0.00 (0.0) ${ }^{1}$	green onion, sulfury, rubbery
	1657 unknown		2.83 (2.32) ${ }^{9}$	3.33 (2.66)9	$5.00(0.63)^{\mathrm{g}}$	4.33 (0.82) ${ }^{9}$	$4.00(1.67)^{\mathrm{G}}$	3.67 (1.03	4.83 (0.9	4.00 (1.67) ${ }^{\text {G }}$	nutty, vitamin, cooked
	1676 unknown		1.67 (1.37) ${ }^{9}$	0.00 (0.0) ${ }^{9}$	1.33 (1.37) ${ }^{\text {g }}$	1.33 (1.37) ${ }^{\text {g }}$	1.33 (2.07) ${ }^{\mathrm{G}}$	0.50 (0.84) ${ }^{\text {G }}$	0.00 (0.0)	0.00 (0.0)	
	1681 unknown		2.67 (2.25) ${ }^{9}$	1.33 (1.03) ${ }^{9}$	2.83 (2.32)9	2.83 (0.75)9	2.00 (1.67) ${ }^{\text {GH }}$	0.67 (1.03) ${ }^{\text {H}}$	2.50 (1.05) ${ }^{\text {G }}$	2.17 (1.33) ${ }^{\text {G }}$	fatty, chicken broth (diena
	1700 unknown		1.33 (1.37)9	1.67 (1.37)9	3.00 (0.89)9	1.83 (0.75)9	3.33 (1.03) ${ }^{\text {GH }}$	2.00 (0.89) ${ }^{\text {H}}$	4.00 (1.67) ${ }^{\text {G }}$	0.00 (0.0) ${ }^{\prime}$	sweet, sour, fatty, planty
	1712 unknown		1.33 (2.07)9	0.00 (0.0) ${ }^{\text {g }}$	1.33 (2.07)9	1.17 (0.98)9	2.00 (1.79) ${ }^{\text {G }}$	$1.00(1.55)^{\mathrm{G}}$	2.00 (1.79) ${ }^{\text {G }}$	1.00 (1.10) ${ }^{\text {G }}$	savory, saffron, hay
	1724 unknown		0.00 (0.0) ${ }^{\text {g }}$	1.33 (1.03)9	1.33 (2.07)9	2.17 (0.75)9	1.33 (2.07) ${ }^{\mathrm{G}}$	1.83 (1.83) ${ }^{\text {G }}$	1.67 (1.86) ${ }^{\text {G }}$	1.50 (1.38) ${ }^{\text {G }}$	rancid, roasted garlic
131	1742 dimethyl tetrasulfide	MS	2.00 (1.10) ${ }^{9}$	0.67 (1.03) ${ }^{\text {gh }}$	0.00 (0.0) ${ }^{\text {h }}$	0.00 (0.0) ${ }^{\text {h }}$	0.00 (0.0) ${ }^{\text {G }}$	0.00 (0.0) ${ }^{\text {G }}$	0.00 (0.0) ${ }^{\text {G }}$	$0.00(0.0)^{\text {G }}$	roasted garlic
	1754 unknown		2.00 (1.55)9	1.00 (1.55) ${ }^{9}$	0.83 (1.33) ${ }^{9}$	2.33 (0.82) ${ }^{\text {g }}$	0.67 (1.03) ${ }^{\text {G }}$	$2.33(0.52)^{\text {G }}$	2.67 (2.25) ${ }^{\text {G }}$	0.50 (1.22) ${ }^{\text {G }}$	fatty, melon
139	1775 diallyl trisulfide	MS	5.33 (1.51) ${ }^{9}$	4.00 (1.10) ${ }^{\text {gh }}$	3.00 (2.00) ${ }^{\text {h,* }}$	3.83 (0.75)99	4.00 (1.67) ${ }^{\mathrm{GH}}$	3.17 (1.60) ${ }^{\text {GH }}$	4.17 (1.47) ${ }^{\mathrm{G}, *}$	$3.00(1.26)^{H}$	green onion
	1781 unknown		$0.00(0.0)^{9}$	$0.00(0.0)^{9}$	3.50 (0.84) ${ }^{\text {h,* }}$	$0.00(0.0)^{9}$	$1.00(0.89)^{G}$	$0.00(0.0)^{\text {G }}$	0.33 (0.82) ${ }^{\text {G/* }}$	0.00 (0.0) ${ }^{\text {b }}$	sweet, candy
141	1797 (E,E)-2,4-decadienal	MS, RI, odor	3.00 (2.37) ${ }^{\text {g }}$	3.50 (0.84) ${ }^{9}$	3.17 (2.48) ${ }^{9}$	3.17 (2.14) ${ }^{\text {g }}$	$2.87(2.23)^{\text {G }}$	2.00 (1.67) ${ }^{\text {G }}$	2.33 (1.86) ${ }^{\text {G }}$	2.50 (2.07) ${ }^{\text {G }}$	fatty, sweet (dienal)

	1810	unknown		3.83 (0.98) ${ }^{9}$	4.17 (0.98) ${ }^{\text {g }}$	3.83 (1.83) ${ }^{9}$	3.67 (2.16) ${ }^{9}$	3.67 (1.51) ${ }^{\text {G }}$	3.83 (1.17) ${ }^{\text {G }}$	$2.50(1.38){ }^{\mathrm{H}}$	3.33 (1.03) ${ }^{\text {G }}$	apple sauce, cooked apple
	1817	unknown		0.00 (0.0) ${ }^{9}$	0.00 (0.0) ${ }^{9}$	2.00 (2.37) ${ }^{9}$	0.00 (0.0) ${ }^{9}$	3.50 (1.87) ${ }^{\text {G }}$	0.67 (1.03) ${ }^{\mathrm{H}}$	$0.00(0.0)^{\mathrm{H}}$	$0.00(0.0)^{\mathrm{H}}$	smoky, sweet, meaty
	1836	unknown		3.00 (0.89) ${ }^{9}$	2.17 (2.04) ${ }^{\text {g }}$	1.83 (1.83) ${ }^{9}$	2.50 (1.38) ${ }^{9}$	3.33 (2.58) ${ }^{\text {G }}$	1.83 (1.60) ${ }^{\text {G }}$	2.50 (2.07) ${ }^{\text {G }}$	$4.00(0.63)^{\mathrm{G}}$	garlic, sweet, meaty
	1845	unknown		2.00 (1.79) ${ }^{9}$	2.67 (0.52) ${ }^{\text {g }}$	2.33 (0.52) ${ }^{9}$	3.00 (0.89) ${ }^{9}$	0.00 (0.0) ${ }^{\prime}$	1.33 (1.21) ${ }^{\mathrm{H}}$	$2.83(0.41)^{\mathrm{G}}$	3.33 (0.52) ${ }^{\mathrm{G}}$	smoky
	1852	unknown		1.67 (2.58) ${ }^{9}$	0.67 (1.03) ${ }^{\text {g }}$	1.33 (2.07) ${ }^{9}$	0.00 (0.0) ${ }^{\text {g }}$	3.17 (1.60) ${ }^{\text {G }}$	2.67 (2.25) ${ }^{\text {GH }}$	$0.00(0.0)^{\mathrm{H}}$	$1.67(2.58){ }^{\text {GH }}$	onion, mushroom, phenolic
	1858	unknown		2.67 (2.25) ${ }^{\text {g }}$	1.33 (2.07) ${ }^{\text {g }}$	1.67 (2.58) ${ }^{9}$	2.83 (2.32) ${ }^{9}$	2.00 (1.79) ${ }^{\text {G }}$	0.00 (0.0) ${ }^{\text {G }}$	0.67 (1.03) ${ }^{\text {G }}$	0.00 (0.0) ${ }^{\text {G }}$	fatty, stale (dienal)
	1872	unknown		1.67 (2.58) ${ }^{9}$	$1.00(1.55)^{\text {g }}$	1.33 (2.07)9	$0.00(0.0){ }^{9}$	0.00 (0.0) ${ }^{\text {G }}$	fatty, stale, meaty			
	1881	unknown		0.67 (1.03) ${ }^{\text {g }}$	0.00 (0.0) ${ }^{9}$	0.00 (0.0) ${ }^{\text {g }}$	0.00 (0.0) ${ }^{\mathrm{g}}$	0.00 (0.0) ${ }^{\mathrm{G}}$	0.00 (0.0) ${ }^{\text {G }}$	1.00 (1.55) ${ }^{\text {G }}$	0.00 (0.0) ${ }^{\mathrm{G}}$	garlic, onion
148	1908	2-phenylethanol	MS, RI, odor	3.17 (1.83) ${ }^{\text {g,* }}$	0.67 (0.52) ${ }^{\text {g }}$	3.17 (2.48) ${ }^{9}$	2.00 (2.37) ${ }^{9}$	2.17 (1.72) ${ }^{\text {G,* }}$	1.67 (2.58) ${ }^{\mathrm{G}}$	2.33 (1.86) ${ }^{\text {G }}$	1.83 (2.86) ${ }^{\mathrm{G}}$	floral, pine sap, rosy
	1927	unknown		0.00 (0.0) ${ }^{\text {g }}$	2.33 (1.97) ${ }^{\text {h }}$	0.00 (0.0) ${ }^{\text {g }}$	0.00 (0.0) ${ }^{\text {g }}$	1.33 (1.03) ${ }^{\mathrm{G}}$	$0.00(0.0)^{\mathrm{H}}$	$0.00(0.0)^{\mathrm{H}}$	$0.00(0.0)^{\mathrm{H}}$	garlic, stale
	1949	unknown		3.33 (0.82) ${ }^{\text {g }}$	$2.50(2.17){ }^{\text {g }}$	4.00 (1.26) ${ }^{9}$	2.67 (1.21) ${ }^{9}$	$2.50(1.22){ }^{\text {G }}$	1.83 (0.75) ${ }^{\mathrm{G}}$	2.50 (1.22) ${ }^{\text {G }}$	2.67 (1.37) ${ }^{\text {G }}$	phenolic, piney, green garlic
	1967	unknown		1.67 (1.37) ${ }^{\text {gh }}$	0.00 (0.0) ${ }^{\text {h }}$	2.33 (1.51) ${ }^{9}$	2.00 (0.00) ${ }^{9}$	2.83 (2.48) ${ }^{\text {G }}$	2.17 (1.17) ${ }^{\mathrm{G}}$	0.67 (1.03) ${ }^{\text {G }}$	1.67 (1.86) ${ }^{\text {G }}$	fatty, meaty (dienal)
	1998	unknown		2.00 (1.67) ${ }^{\text {g,* }}$	2.50 (0.55) ${ }^{\text {g }}$	3.67 (1.21) ${ }^{9}$	4.33 (1.51) ${ }^{9}$	3.50 (1.22) ${ }^{\mathrm{GH}, *}$	1.33 (1.03) ${ }^{\mathrm{H}}$	$4.83(0.75)^{\mathrm{G}}$	2.17 (1.72) ${ }^{\mathrm{H}}$	garlic, wild green onion, stale
	2030	unknown		$1.00(1.55)^{9}$	$0.00(0.0)^{9}$	0.00 (0.0) ${ }^{9}$	0.00 (0.0) ${ }^{9}$	0.67 (1.03) ${ }^{\text {G }}$	0.00 (0.0) ${ }^{\text {G }}$	0.00 (0.0) ${ }^{\text {G }}$	0.00 (0.0) ${ }^{\text {G }}$	meaty, garlic
	2036	unknown		1.83 (1.47) ${ }^{\text {g }}$	1.00 (0.89) ${ }^{\text {g }}$	2.00 (1.79)9	0.33 (0.52)9	0.00 (0.0) ${ }^{\text {G }}$	0.00 (0.0) ${ }^{\text {G }}$	0.00 (0.0) ${ }^{\text {G }}$	0.00 (0.0) ${ }^{\mathrm{G}}$	garlic
	2098	unknown		0.00 (0.0) ${ }^{9}$	0.33 (0.52) ${ }^{\text {g }}$	2.00 (1.10) ${ }^{\text {g }}$	1.50 (1.22) ${ }^{9}$	$0.00(0.0)^{\mathrm{G}}$	0.00 (0.0) ${ }^{\mathrm{G}}$	0.00 (0.0) ${ }^{\mathrm{G}}$	$0.50(0.84)^{\mathrm{G}}$	garlic, floral
	2106	unknown		0.00 (0.0) ${ }^{\text {g }}$	0.00 (0.0) ${ }^{9}$	2.00 (0.89) ${ }^{\text {h }}$	0.00 (0.0) ${ }^{9}$	0.00 (0.0) ${ }^{\text {G }}$	0.00 (0.0) ${ }^{\text {G }}$	1.33 (1.03) ${ }^{\text {G }}$	0.67 (1.03) ${ }^{\text {G }}$	sweetish, phenolic
	2140	unknown		0.00 (0.0) ${ }^{\text {g }}$	1.33 (1.03) ${ }^{\text {gh }}$	1.67 (0.52) ${ }^{\text {h,* }}$	1.67 (0.52) ${ }^{\text {h,* }}$	0.00 (0.0) ${ }^{\mathrm{G}}$	0.67 (1.03) ${ }^{\mathrm{G}}$	0.00 (0.0) ${ }^{\text {G,* }}$	0.00 (0.0) ${ }^{\text {G,* }}$	grapes, rancid, oily
	2148	unknown		2.50 (0.84) ${ }^{\text {g,* }}$	1.67 (1.51) ${ }^{\text {gh }}$	$1.00(0.89)^{\mathrm{h}}$	$0.83(0.75)^{\mathrm{h}}$	3.33 (1.37) ${ }^{\text {G,* }}$	2.33 (1.97) ${ }^{\text {G }}$	$0.33(0.52)^{\mathrm{H}}$	$0.33(0.52)^{\mathrm{H}}$	meaty, sweet, cloves
	2171	unknown		$0.00(0.0)^{\mathrm{g}}$	1.00 (1.55) ${ }^{\text {g }}$	1.33 (1.03) ${ }^{9}$	0.00 (0.0) ${ }^{9}$	$2.00(1.55)^{\mathrm{G}}$	0.00 (0.0) ${ }^{\mathrm{H}}$	$0.00(0.0)^{\mathrm{H}}$	$0.00(0.0)^{\mathrm{H}}$	smoky, phenolic, spicy
	2219	unknown		2.50 (0.84) ${ }^{\text {gh }}$	2.17 (1.72) ${ }^{\text {gh }}$	2.67 (1.03) ${ }^{9}$	0.00 (0.0) ${ }^{\text {h }}$	3.33 (1.03) ${ }^{\text {G }}$	$1.83(1.83)^{\mathrm{G}}$	$1.67(1.51)^{\mathrm{G}}$	$1.67(1.37)^{\mathrm{G}}$	meaty, grape, naphthalene
157	2234	2-phenylethyl isothiocyanate	MS	$1.67(1.37)^{\mathrm{g}}$	$1.00(1.55)^{\mathrm{g}}$	0.67 (1.03) ${ }^{\text {g }}$	1.00 (0.89) ${ }^{\text {g }}$	$2.00(1.55)^{G}$	$0.00(0.0)^{\mathrm{H}}$	$0.00(0.0)^{\mathrm{H}}$	$0.00(0.0)^{\mathrm{H}}$	grape, floral, musty, raddish
	2336	unknown		2.33 (2.25) ${ }^{\text {g }}$	0.00 (0.0) ${ }^{\text {g }}$	0.00 (0.0) ${ }^{\text {g }}$	0.00 (0.0) ${ }^{\text {g }}$	2.00 (1.79) ${ }^{\text {G }}$	$0.00(0.0)^{\mathrm{H}}$	$0.00(0.0)^{\mathrm{H}}$	$0.00(0.0)^{\mathrm{H}}$	ginger root, meaty

GC/O, although they have low threshold values of 60 and 0.007 ppb in water, respectively (Buttery et al., 1971). Only two ketones, 2,3-butanedi one and 1-octen3 -one, were detected during GC/O. The odor intensity of 2,3-butanedione (buttery and cheese-like) increased with fermentation time in both FS and C, while that of 1-octen-3-one (mushroom and earthy) decreased.

The alcohols ethanol, propanol, 1-penten-3-ol, 3-meth-yl-1-butanol, and 2-furanmethanol and four terpene alcohols (borneol, β-citronellol, geraniol, and nerolidol) were in high abundance in both samples during fermentation. In particular, levels of ethanol sharply increased during fermentation and composed more than 40% of the total volatile compounds in both samples after 30 days. Nevertheless, all of the alcohols detected in GC/O, except for linalool and 2-phenylethanol, had low odor intensities in FS and C throughout the fermentation. This may be because most alcohols have high threshold values (Buttery et al., 1988; Takeoka et al., 1990). Linalool, having a low threshold ($t=6 \mathrm{ppb}$; Takeoka et al., 1990), contributed a floral, spicy, and flower-like odor throughout the fermentation period. The odor intensity of 2-phenylethanol (floral and rosy) remained constant in FS and C during fermentation. Terpene alcohols detected in Kimchi may have been derived from nonvolatile terpenoid glycosides through the action of enzymes, acid, and/or heat (Chen and Ho, 1989).

Among 24 terpenes detected, 6 such as α-zingiberene, β-phellandrene, β-sesquiphellandrene, camphene, β-bisabolene, and farnesene isomer (no. 130) were found in high abundance at days 0 and 7; however, levels of these compounds decreased markedly after 30 days in both samples. Chen and Ho (1989) reported that α-zingiberene and β-sesquiphellandrene are readily converted to ar-curcumene by oxidative degradation. These sesquiterpenes may not be important in the characteristic flavor of Kimchi because of their relatively high threshold values (Takeoka et al., 1990; Buttery et al., 1988), especially when compared with the sulfur-containing compounds. α-Pinene (plastic bottle and piney) was the only terpene detected by GC/O and had low odor intensities in both FS and C .

Three thiocyanates, 2-phenylethyl- and 3-butenyl isothiocyanate and methyl thiocyanate, were detected in high abundance in both samples at day 0 and then gradually decreased during fermentation. These compounds, with mustard oil, pungency, hot-likeodors, were reported as major components affecting the characteristic flavor of Chinese cabbage (Daxenbichler et al., 1979), cabbage, broccoli, and cauliflower (VanEtten et al., 1976; Buttery et al., 1976). H owever, 2-phenylethyl isothiocyanate (floral, musty, and raddish) was the only compound in this group detected by GC/O and was at low odor intensities in C throughout the fermentation period, while it was present in FC at day 0 only. Buttery et al. (1976) reported that 2-phenylethyl isothiocyanate was an important component of cabbage aroma, and its odor threshold was 6 ppb in water. Hashimoto et al. (1982) also reported that glucosinolate (thioglucoside) in cabbage leaves is degraded by myrosinase to yield three main types of products, isothiocyanates, thiocyanates, and nitriles.

Nine acids were identified in FS and 4 in C during fermentation. Low-molecular weight fatty acids from C4 to C6 were detected in FS only. These compounds, having rancid, pungent, and cheesey odors, depending
on their concentration, may be formed either from lipid oxidation or via bacterial degradation of amino acids (Dougan and Howard, 1975; Sanceda et al., 1992). Ryu et al. (1984) reported that levels of volatile organic acids, such as acetic, propionic, butyric, valeric, caproic, and heptanoic, increased with the fermentation period of Kimchi. Acetic acid (vinegar-like) was only detected by GC/O after day 15.
2-Acethyl-1-pyrroline (popcorn-like) was detected with high odor intensities until day 7 in both C and FS but was not detected after day 15 . This compound can be formed from the reaction of 2-oxopropanal with either proline or ornithine (Schieberle, 1990). 2-Acetyl-1pyrroline is a character-impact odorant in many foods, including cooked crab meat (Chung and Cadwallader, 1994), cooked spiny lobster (Cadwallader et al., 1995), and aromatic rice (Buttery et al., 1983).

Among the unidentified compounds detected in GC/ O, four compounds ($\mathrm{RI}=1485,1510,1657$, and 1810) had high odor intensities in both FS and C. These compounds were described as meaty $(\mathrm{RI}=1485)$, spicy and floral ($\mathrm{RI}=1510$), nutty and vitamin-like (RI = 1657), and apple sauce- and cooked apple-like (RI = 1810). Two additional unidentified compounds (RI = 1858 and 1872), having fatty and stale odors, were found at higher intensities in C than in FS.

On the basis of the odor intensities of compounds detected by GC/O, sulfur-containing compounds may play important roles in formation of Kimchi flavor. These include many unidentified compounds having garlic- and green onion-like odors. There was no difference in the intensities and numbers of aroma-active compounds between C and FS during fermentation. It was, therefore, concluded that addition of fish sauce had little or no impact on the formation of aroma-active compounds in Kimchi during fermentation. It is possible that fish sauce only has a noticeable effect on the taste quality of Kimchi. Additional studies involving sensory evaluation and/or the monitoring of levels of taste-active compounds in Kimchi during fermentation are needed to determine if fish sauce actually impacts the flavor of Kimchi.

LITERATURE CITED

Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of the Association of Official Analytical Chemists, 13th ed.; Association of Official Analytical Chemists: Washington, DC, 1980.
Block, E.; Calvey, E. M. Facts and artifacts in Allium chemistry. In Sulfur Compounds in Foods; Mussinan, C. J ., and Keelan, M. E., Eds.; ACS Symposium Series 564; American Chemical Society: Washington, DC, 1994; pp 63-79.
Block, E.; Naganathan, S.; Putman, D.; Zhao, S. H. Allium chemistry: HPLC analysis of thiosulfinates from onion, garlic, wild garlic (Ramsoms), leek, scallion, shallot, elephant (Great-headed) garlic, chive, and Chinese chive. Uniquely high allyl to methyl ratios in some garlic samples. J. Agric. Food Chem. 1992, 40, 2418-2430.

Buttery, R. G.; Seifert, R. M.; Guadagni, D. G.; Ling, L. C. Characterization of additional volatile components of tomato. J. Agric. Food Chem. 1971, 19, 524-529.
Buttery, R. G.; Guadagni, D. G.; Ling, L. C.; Seifert, R. M.; Lipton, W. Additional volatile components of cabbage, broccoli, and cauliflower. J. Agric. Food Chem. 1976, 24, 829-832.
Buttery, R. G.; Ling, L. C.; J uliano, B. O.; Turnbaugh, J . G. Cooked rice aroma and 2-acetyl-1-pyrroline. J. Agric. Food Chem. 1983, 31, 823-826.

Buttery, R. G.; Turnbaugh, J. G.; Ling, L. C. Contribution of volatiles to rice aroma. J. Agric. Food Chem. 1988, 36, 1066-1069.
Cadwallader, K. R.; Tan, Q.; Chen, F.; M eyers, S. P. Evaluation of the aroma of cooked spiny lobster tail meat by aroma extraction dilution analysis. J. Agric. F ood Chem. 1995, 43, 2432-2437.
Chen, C. C.; Ho, C. T. Volatile compounds in ginger oil generated by thermal treatment. In Thermal Generation of Aromas; Parliament, T. H., McGorrin, R. J., Ho, C. T., Eds.; ACS Symposium Series 409; American Chemical Society: Washington, DC, 1989; pp 366-375.
Choi, S. Y.; Kim, Y. B.; Yoo, J. Y.; Lee, I. S.; Chung, K. S.; Koo, Y. J. Effect of temperature and salt concentration on Kimchi manufacture and storage. Korean J. Food Sci. Technol. 1990, 22, 707-710.
Chung, H. Y.; Cadwallader, K. R. Aroma extract dilution analysis of blue crab claw meat volatiles. J. Agric. Food Chem. 1994, 42, 2867-2870.
Collin, S.; Osman, K.; Delcambre, S.; EI-Zayat, A. I.; Dufour, J. P. Investigation of volatile flavor compounds in fresh and ripened domiati cheeses. J. Agric. Food Chem. 1993, 41, 1659-1663.
Daxenbichler, M. E.; VanEtten, C. H.; Williams, P. H. Glucosinolates and derived products in cruciferous vegetables. Analysis of 14 varieties of Chinese cabbage. J. Agric. Food Chem. 1979, 27, 34-37.
Dougan, J.; Howard, G. E. Some flavouring constituents of fermented fish sauces. J. Sci. F ood Agric. 1975, 26, 887894.

Forss, D. A. Review of the progress of dairy science: mechanisms of formation of aroma compounds in milk and milk products. J. Dairy Res. 1979, 46, 691-706.
Guth, H.; Grosch, W. Quantification of potent odorants in virgin olive oil by stable isotope-dilution assays. J. Am. Oil Chem. Soc. 1993, 70, 513-518.
Hashimoto, S.; Miyazawa, M.; Kameoka, H. Volatile flavor sulfur and nitrogen constituents of Brassica rapa L. J. Food Sci. 1982, 47, 2084-2085, 2088.
Heo, W. D.; Ha, J. H.; Seog, H. M.; Nam, Y. J.; Shin, D. W. Changes in the taste and flavour compounds of Kimchi during fermentation. Korean J. F ood Sci. Technol. 1988, 20, 511-517.
J osephson, D. B.; Lindsay, R. C. Retro-Aldol degradations of unsaturated aldehydes: Rolein the formation of c4-heptenal from t2,c6-nonadienal in fish, oyster and other flavors. J. Am. Oil Chem. Soc. 1987, 64, 132-138.
J osephson, D. B.; Lindsay, R. C.; Stuiber, D. A. Variations in the occurrences of enzymically derived volatile aroma compounds in salt and freshwater fish. J. Agric. Food Chem. 1984, 32, 1344-1346.
Kawakami, M.; Kobayashi, A. Volatile constituents of green mate and roasted mate. J. Agric. Food Chem. 1991, 39, 1275-1279.
Koo, Y. J .; Choi, S. Y. Changes of the nutritional compounds. In Scienceand Technol ogy of Kimchi; Koo, Y. J., Choi S. Y., Eds.; K orea Food Research Institute: Seoul, South Korea, 1990; pp 145-153.
Kuo, M. C.; Ho, C. T. Volatile constituents of the distilled oils of Welsh onions (Allium fistulosum L. variety Maichuon) and scallions (Allium fistulosum L. variety Caespitosum). J. Agric. Food Chem. 1992, 40, 111-117.

Lee, J. M.; Lee, H. R. Standardization for the preparation of traditional Korean whole cabbage Kimchi with salted shrimp. Korean J. Diet. Cult. 1994, 9, 79-85.
Lee, S. K.; Shin, M. S.; J hong, D. Y.; H ong, Y. H.; Lim, H. S. Changes in Kimchis containing different garlic contents during fermentation. Korean J. F ood Sci. Technol. 1989, 21, 68-74.
Mheen, T. I.; Kwon, T. W. Effect of temperature and salt concentration on Kimchi fermentation. Korean J. F ood Sci. Technol. 1984, 16, 443-450.
Milo, C.; Grosch, W. Changes in the odorants of boiled trout (salmo fario) as affected by the storage of the raw material. J. Agric. Food Chem. 1993, 41, 2076-2081.

Park, K. Y. The nutritional evaluation, and antimutagenic and anticancer effect of Kimchi. J. Korean Soc. F ood Nutr. 1995, 24, 169-182.
Park, Y. S.; Koo, Y. J.; Ahn, B. H.; Choi, S. Y.; Cho, D. W.; Lee, M. K. Standardization of Kimchi-manufacturing process. K orea Food Research Institute Report No. 0449; K orea Food Research Institute: Seoul, South K orea, 1994.
Ryu, J. Y.; Lee, H. S.; Rhee, H. S. Changes of organic acids and volatile flavor compounds in Kimchis fermented with different ingredients. Korean J. Food Sci. Technol. 1984, 16, 169-174.
Sanceda, N. G.; Kurata, T.; Suzuki, Y.; Arakawa, N. Oxygen effect on volatile acids formation during fermentation in manufacture of fish sauce. J . Food Sci. 1992, 57, 1120-1122, 1135.

SAS Institute, Inc. User's Guide: Statistics Rel ease 6.11; SAS Institute Inc.: Cary, NC, 1995.
Schieberle, P. The role of free amino acids present in yeast as precursors of the odorants 2-acetyl-1-pyrrol ine and 2-acetyltetrahydropyridine in wheat bread crust. Z. Lebensm.-Unters.-F orsch. 1990, 191, 206-209.
Takeoka, G. R.; Flath, R. A.; Mon, T. R.; Teranishi, R.; Guentert, M. Volatile constituents of apricot (Prunus armeniaca). J. Agric. Food Chem. 1990, 38, 471-477.
van den Dool, H.; Kratz, P. D. A generalization of the retention index system including linear temperature programmed gas liquid partition chromatography. J. Chromatogr. 1963, 11, 463-471.

VanEtten, C. H.; Daxenbichler, M. E.; Williams, P. H.; Kwolek, W. F. Glucosinolates and derived products in cruciferous vegetables. Analysis of the edible part from twenty-two varieties of cabbage. J. Agric. F ood Chem. 1976, 24, 452-455.
Wu, J. J.; Yang, J. S. Effects of γ irradiation on the volatile compounds of ginger rhizome (Zingiber officinale Roscoe). J. Agric. Food Chem. 1994, 42, 2574-2577.

Yu, T. H.; Wu, C. M.; Ho, C. T. Volatile compounds of deep-oil fried, microwave-heated, and oven-baked garlic slices. J. Agric. Food Chem. 1993, 41, 800-805.
Yu, T. H.; Lin, L. Y.; Ho, C. T. Volatile compounds of blanched, fried blanched, and baked blanched garlic slices. J. Agric. Food Chem. 1994a, 42, 1342-1347.
Yu, T. H.; Shu, C. K.; Ho, C. T. Thermal decomposition of alliin, the major flavor component of garlic, in an aqueous solution. In Food Phytochemicals for Cancer Prevention I. Fruits and Vegetables; Huang, M. T., Osawa, T., Ho, C. T., Eds.; American Chemical Society: Washington, DC, 1994b; pp 144-152.

Received for review August 18, 1997. Revised manuscript received February 10, 1998. Accepted February 11, 1998. Mississippi Agricultural and Forestry Experiment Station Manuscript J 9201. This research was supported in part by the Mississippi Agricultural and Forestry Experiment Station under project MIS-0855.
J F 9706991

[^0]: ${ }^{\dagger}$ Y.J.C. and H.K. are with the Department of Food Science \& Nutrition, Changwon National University, Changwon 641773, South K orea.

 * Corresponding author. Department of Food Science and Technology, Mississippi State University, Box 9805, Mississippi State, MS 39762 [telephone (601) 325-3200; fax (610) 3258728; e-mail krcmail@ra.msstate.edu].

